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Abstract

This study examines the bias issue in public Deepfake datasets and its impact on Deepfake detection models. It provides annotations
for 47 attributes in five popular Deepfake datasets and analyses the bias of three state-of-the-art Deepfake detection backbone
models. The investigation covers demographic and non-demographic attributes such as gender, ethnicity, hair, skin, and accessories.
The results reveal a lack of diversity in the datasets and significant bias in the detection models towards various attributes. These
biased models may produce incorrect detection results, posing challenges in generalizability, fairness, and security. The study aims to
raise awareness and offer annotation databases to help address bias in future Deepfake detection techniques.

Experimental setup

Evaluation Metrics

* Balanced error

* Corrected relative
performance

Deepfake Detection Backbones
* EfficientNet-BO

» Xception

» Capsule-Forensics-v2

Deepfake Datasets

* Celeb-DF, DFD, FF++, DF1.0, DFDC

* 30 frames per video with 10-frame
intervals

Database Annotations
Massive and diverse annotations for five widely-used

Deepfake detection datasets
- MAAD-Face classifier|[1]

Measuring Bias on Unbalanced Data
Corrected relative performance (CRP)

CRP(a) = RPgiata (a) — RP.ontroi1(@)

Over 65.3M annotations

47 attributes: Demographic & non-demographic
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Analysing Database Annotations

Strong imbalance and correlations
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Where RPqyp.(a) =1
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RP,,,.(a) measures the performance dlfferences for an attribute
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PDRP - CRP for pristine data, DDRP - CRP for Deepfake data

Analysing Bias in Deepfake Detection
EfficientNet-BO with A-Celeb-DF
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Conclusion

We provided large-scale annotations for five popular Deepfake detection datasets and used these to comprehensively analyse bias in

Deepfake detection. Our main findings are

 Deepfake detection databases and strong imbalance.

 Current Deepfake detection databases contain some strongly correlating attribute pairs.

 The analysed Deepfake detection backbone models are strongly biased for many demographic and non-demographic attributes.

* For many of the investigated attributes, the biased performance similarly affects the pristine and Deepfake data.

 The results suggest that the model tends to learn questionable assumptions where a certain attribute is present.

* The presence of a certain attribute in a Deepfake image resulted in an increased error rate, several times higher than for a Deepfake
without this attribute.

Future works:

* Creating more unbiased, balanced, and diverse Deepfake datasets

* Developing bias-mitigating Deepfake detection solutions
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